

Spynl - write a web app you can manage

Spynl is a Python web framework which extends the Pyramid [http://getpyramid.com] web framework.

Spynl helps you to manage your web application:

	Build your app (via Jenkins [https://jenkins.io])

	Deploy your app (via Docker [https://www.docker.com/what-docker])

	Serve endpoint documentation for frontend devs (via Swagger [http://swagger.io/])

	Inspect settings and meta-data of running instances in the browser

	Aggregate performance indicators and error messages in NewRelic [https://newrelic.com] and/or Sentry [https://sentry.io]

Spynl also has a few other in-built utilities which are often necessary in a modern professional web application but easily take a few days to get right:

	Manage translations (via Babel [http://babel.pocoo.org])

	Send templatable, translatable HTML emails

	validate JSON input and output with Schemas

Installation

Here is a (very) quick How-To for installing Spynl:

$ pip install spynl
$ spynl dev.serve

Now you can visit Spynl’s in-built /about endpoint:

$ curl http://localhost:6543/about

And you should get a reponse like this:

{
 "status": "ok",
 "language": "en",
 "time": "2017-02-03T10:13:41+0000",
 "plugins": {},
 "message": "This is a Spynl web application. You can get more information at about/endpoints, about/ini, about/versions, about/build and about/environment.",
 "spynl_version": "6.0.1"
}

So you see there are a few endpoints with more specific information. Try visiting http://localhost:6543/about/endpoints to see the documentation for in-built endpoints and http://localhost:6543/about/ini to see possible settings.

The plugins part is empty because we haven’t written any code of our own yet.
See the next section for that.

Short developer tutorial

A small tutorial where we build up a small app step by step.

	Development tutorial
	A plugin with one endpoint

	Adding documentation for the endpoint

	Serve on localhost

	Getting help about spynl CLI tasks

	Testing the endpoint

	Adding translations

	Tab completion for the spynl CLI

	Installing the package from SCM

Short operations tutorial

We show what steps are necessary to get your Spynl-based app built, deployed and
smoke-tested.

	Building & Deploying Tutorial
	Creating a Jenkins job

	Configuring your Spynl plugin for Jenkins

	Configuring your Spynl plugin for Deployment

	Configuring your Spynl plugin for Smoke Testing

	Deploying to your production environment

In-depth documentation

Shining more light on a few important topics (work in progress):

	ini-settings
	/about/ini

	Spynl checks required settings on startup

	Documenting your own settings

	Your production environment(s)
	Docker

	Possibilities to turn off endpoints and whole resources on production

	Do not send emails to real addresses from non-production environments

	Using different container registries for dev and for production

	Parameter Handling

	Serialisation

	Translations
	Translating a string in Spynl

	dev.translate to simplify the workflow

	A word about when Spynl translates

	Routing
	URLDispatch

	Endpoint registration

	Custom resource registration

	Custom routes

	HTML emails
	Custom base template

	Write a content template

	Non-production email behaviour

	Custom get_user_info
	The in-built get_user_info function

	Writing your own

	Validation per JSON Schema

	Aggregation of Logs
	NewRelic

	Sentry

	Error Handling
	Error Views

	SpynlException class

	Mapping external Exceptions

Development tutorial

In this minimalistic tutorial we will make a Spynl plugin called my-package with one endpoint.
It will be served in a dev environment, documented, tested and translated.
We will build the code part by part, but you can browse my-package contens.

The spynl CLI has support for common tasks in the development cycle, which
we’ll use as they become relevant.

A plugin with one endpoint

First, you probably want to make a virtual environment and activate it [http://docs.python-guide.org/en/latest/dev/virtualenvs/].
Remember to use Python3, preferrably >= 3.5.

Then we install Spynl:

$ pip install spynl

Now we’ll create a folder for our package

$ cd $VIRTUAL_ENV/src
$ mkdir my-package
$ touch my-package/setup.py my-package/hello_world.py

Here is the content of our (very) simple setup.py, where we state that
my-package is a Spynl plugin:

from setuptools import setup

setup(name='my-package',
 entry_points={
 'spynl.plugins': [
 'hello_world = 1',
]
 }
)

This says that hello_world.py should be plugged into the Spynl application.
What this means is that Spynl calls Pyramid’s config.include [http://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.include] function, passing the hello_world
module to it. Therefore, Pyramid expects a function hello_world.includeme,
which we’ll write below.

spynl_plugins is a list, so we could add other modules if that would suit our code
organisation in my-package. For that matter, we could also add other packages
who also define spynl.plugins entry points.

And here is hello_world.py. We write one endpoint and the registration for it:

def hello(request):
 return dict(message="Hello, world!")

def includeme(config):
 config.add_endpoint(hello, 'hello')

The hello function is a pretty vanilla endpoint. It returns a dictionary.
This would mean Spynl returns it as application/json (it’s default response
type), but it could also be served as XML or even YAML (read more about
Serialisation).

The includeme function gets a Pyramid
config [http://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html]
object, on which we can in principle do everything one can do when writing a pure
Pyramid application. We don’t need anything but config.add_endpoint however,
which is actually unique to Spynl (it does some extra magic w.r.t. documentation
and route management).

Finally, we develop our package so Spynl knows about it and serve the application:

$ python setup.py develop
$ spynl dev.serve

(As you see, the spynl CLI command works from anywhere when you have your
virtual environment activated).

The endpoint http://localhost:6543/hello answers:

{
 "status": "ok",
 "message": "Hello, world!"
}

Adding documentation for the endpoint

Now let’s document the endpoint for frontend developers:

def hello(request):
 """
 Say hello to the world.

 get:
 description: >

 ####Response

 JSON keys | Content Type | Description\n
 --------- | ------------ | -----------\n
 status | string | 'ok' or 'error'\n
 message | string | Hello, world!\n

 tags:
 - my-package
 show-try: true
 """
 return dict(message="Hello, world!")

def includeme(config):
 config.add_endpoint(hello, 'hello')

Then, the Swagger doc at http://localhost/about/endpoints actually lists our endpoint:

[image: _images/hello-swagger.png]
Click on the endpoint to see details or try it out:

[image: _images/hello-swagger2.png]
We are not using Swagger to its full potential here w.r.t. to its schema
capabilities, we know. We chose not to, you can choose otherwise.

Serve on localhost

You already saw how to serve the app:

$ spynl dev.serve

Getting help about spynl CLI tasks

Now that we begin using the sspynl CLI, we should note that for each CLI task,
you can get help:

$ spynl --help dev.serve
Usage: spynl [--core-opts] dev.serve [other tasks here ...]

Docstring:
Run a local server. The ini-file development.ini is searched for in
installed Spynl plugins. If there is none, minimal.ini is used.

Options:
none

Testing the endpoint

Let’s write a simple test in my-package/test_hello.py:

import pytest
from webtest import TestApp
from spynl.main import main

@pytest.fixture(scope="session")
def app():
 spynl_app = main(None)
 return TestApp(spynl_app)

def test_hello(app):
 response = app.get('/hello', status=200)
 assert response.json['message'] == "Hello, world!"

Then, we can run:

$ spynl dev.test

I hope you saw this (the dot says it succeeded):

[spynl dev.test] Testing package: my-package
============================= test session starts ==============================
platform linux -- Python 3.5.2, pytest-3.0.5, py-1.4.32, pluggy-0.4.0
rootdir: /home/nicolas/workspace/spynl-git/venv/src/my-package, inifile:
plugins: sugar-0.8.0, cov-2.4.0, raisesregexp-2.1
collected 1 items

test_hello.py .

Adding translations

Then we have support for translating the app. Let us add a translatable string
to the hello_world endpoint:

from spynl.main.locale import SpynlTranslationString as _

def hello(request):
 return dict(message=_('hello-msg', default="Hello, world!"))

We can now refresh the translation catalogue of our package:

$ spynl dev.translate --packages my-package --languages nl --action refresh
[spynl dev.translate] Package: my-package ...
[spynl dev.translate] Creating locale folder ...
running extract_messages
extracting messages from hello_world.py
extracting messages from setup.py
extracting messages from test_hello.py
writing PO template file to ./locale/messages.pot
[spynl dev.translate] File ./locale/nl/LC_MESSAGES/my-package.po does not exist. Initializing.
running init_catalog
creating catalog ./locale/nl/LC_MESSAGES/my-package.po based on ./locale/messages.pot
[spynl dev.translate] Done with language nl.
--

Spynl created all necessary folders and initialised a catalogue. Now a human
needs to translate our string to Dutch. Make this change in
my-package/locale/nl/LC_MESSAGES/my-package.po:

#: hello_world.py:23
msgid "hello-msg"
msgstr "Hallo, Wereld!"

Then we can compile the catalogue, so that Spynl will serve Dutch when it
should:

$ spynl dev.translate --packages my-package --languages nl
[spynl dev.translate] Package: my-package ...
[spynl dev.translate] Located locale folder in /home/nicolas/workspace/spynl/venv/src/my-package ...
running compile_catalog
compiling catalog /home/nicolas/workspace/spynl/venv/src/my-package/locale/nl/LC_MESSAGES/my-package.po to /home/nicolas/workspace/spynl/venv/src/my-package/locale/nl/LC_MESSAGES/my-package.mo
[spynl dev.translate] Done with language nl.
--

There are ony two actions, refresh and compile.
If the –action parameter is not given, spynl dev.translate compiles.

The compilation step is not necessary and you don’t have to include the binary
.mo file in your SCM. When we build a Docker image on Jenkins (see below),
Jenkins runs the compile action.

we need to tell Pyramid that the new locale directory exists. Add this
to the include_me function in my-package/hello_world.py:

config.add_translation_dirs('%s/src/my-package/locale'
 % os.environ['VIRTUAL_ENV'])

Now we want to see our app serve Dutch. We still need to configure the list
of languages we serve in our app. This is a great opportunity to start
using our own .ini file. Copy Spynl’s minimal.ini to my-package/development.ini
and add the spynl.languages setting in the [app:main] section:

[app:main]
use = egg:spynl
spynl.pretty = 1
spynl.languages = nl,en

It is crucial which language is first in this list. Because nl is first, we’ll
get a Dutch reply from Spynl, e.g.by visiting http://localhost:6543:

FIXME: However, http://localhost:6543/hello still returns english ...

Tab completion for the spynl CLI

Now that we’re spynl power users, it’s time to reveal an important feature:
There is tab completion for the spynl CLI. To activate it, run

$ source $VIRTUAL_ENV/lib/python3.5/site-packages/spynl/spynl/cli/zsh.completion

(you might need to adapt the path to spynl, it depends on your environment and
method of installation)

You can list (a subset of) tasks by pressing TAB and if the task is complete also the available options.
To see options, type a dash (“-”) and the press TAB.

This is available for bash and fish as well, simply replace zsh in the
command.

Installing the package from SCM

Of course, we will want to use Source Code Management (SCM) for our own code,
e.g. on github or bitbucket. spynl provides a task called dev.install which
makes it easy to get started in a new dev environment with developing your app
further.

Let’s assume your project uses git as SCM and lives in a bitbucket repo:

$ spynl dev.install --scm-url git@bitbucket.org:my-team/my-package.git

spynl dev.install will clone the code and develop it.

In general, Spynl also supports mercurial repositories.

There are some configuration options here (try spynl –help dev.install for
all of them). For example, let’s assume you work want to work with a feature
branch and you want/need to specify in which directory the code should be installed:

$ spynl dev.install --scm-url git@bitbucket.org:my-team/my-package.git --revision me/some-feature --src_path path/to/my/virtualenv/src

spynl dev.install can also install non-Python dependencies for you or do any
other things pre- or post-installation. See setup.sh.template in the main Spynl repo. (TODO: point to actual documentation of setup.sh).

Building & Deploying Tutorial

(work in progress)

At some point, the my-package app should be built, so it can run somewhere
else than on localhost:6543. In Spynl, this means starting a job on Jenkins,
where the following stages happen:

	All tests are run

	A Docker image is built and deployed to your dev container registry

	Smoke tests are run against a freshly-started container based on that tnew
image

There is only one spynl command necessary here: spynl dev.start_build.
However, some services need to be set up and configured, namely Jenkins and
one or two container registries.

Creating a Jenkins job

Jenkins [https://jenkins.io] is an open-source build server.
We’ll assume in this tutorial that you installed one locally and have it
Configuring your Spynl plugin for Deployment running at http://localhost:8080.
Jenkins needs Docker engine [https://docs.docker.com/engine/installation/] installed on it,
plus aws-utils [https://www.npmjs.com/package/aws-utils] (?)
and any libraries you need for tests to be run.

Spynl uses the Pipeline feature [https://jenkins.io/solutions/pipeline/]
of Jenkins. Here is how Jenkins displays your build history:

[image: _images/jenkins-pipeline.png]
If any error happens, your build has failed - the stage is coloured red and the
pipeline aborts.

After you have set up a Jenkins server, you need to create a Pipeline job called “Spynl”.
In the Jenkins web interface, navigate to Jenkins -> New Item -> Pipeline.

Configure the Pipeline “Definition” to be a Pipeline script from SCM, the
“SCM” to be Git and the “Repository URL” to be https://github.com/SoftwearDevelopment/spynl.git.
under “Branches to build”, add refs/heads/$spynlbranch.

Finally you need to add a few String parameters to the job:

	scm_urls

	revision

	fallbackrevision (default: $revision)

	task

	spynlbranch

That’s it! Save the Jenkins job.

Configuring your Spynl plugin for Jenkins

Add the following ini-setting to development.ini:

[app:main]
spynl.ops.jenkins_url: http://localhost:8080

Now we can start a build:

$ spynl ops.start_build

This will build the master branch on spynl as well as my-package. See
spynl –help ops.start_build for more options.

Configuring your Spynl plugin for Deployment

(TODO: more verbose, this is an outline)

At the moment, Jenkins will be able to build a Docker image, but will fail to
push it anywhere.

Set at least these two ini-settings:

	spynl.ops.ecr.dev_tasks

	spynl.ops.ecr.dev_url

You also need to set the task parameter to spynl ops.start_build. It needs
to be one (or more) of spynl.ops.ecr.dev_tasks and a task that exists in your
development container service (e.g. in AWS [https://aws.amazon.com/ecs/]):

spynl ops.start_build --task dev

Now Jenkins can deploy that image to your development container registration and
for that task and restart that task so it will serve your new container.

Configuring your Spynl plugin for Smoke Testing

The third stage in the pipeline is the smoke test. Out of the box, Spynl checks
if a container actually exists at the location you want your container service to
serve them. Add the following ini-setting:

spynl.ops.dev_url

Spynl also checks if this image has been built within the last 15 minutes.

Your app can specify it’s own smoke tests (TODO: write one in my-package)

Deploying to your production environment

(TODO: more verbose)

Set this ini-setting:

spynl.ops.ecr.prod_url:

Run the dev.start_build task

spynl ops.start_build --task production

TODO: At the moment, Spynl only pushes the new image to that registry.
We could make it an ini-setting if Spynl shoiuld try to restart a task there.

ini-settings

/about/ini

Spynl checks required settings on startup

Documenting your own settings

from spynl.main.docs.settings import ini_doc
my_ini_doc = ...
ini_doc.extend(my_ini_doc)

Your production environment(s)

You’ll probably have a dev environment and at least one production(-like) environment.
Spynl helps you to:

	keep the code consistent between deploys to each of them

	Make sure test do not affect real users and unfinished things are turned off
in production

	allow a third party to control your prodcution pipeline

Docker

We use Docker to ship Spynl. You can be sure there that you look at the same
code in dev and production. (/about/versions can help you to look up
precisely which code is in there).

/about/build helps you to see when the Image was made (built on Jenkins) and when it was started.

The image is Ubuntu-based.

Custom pre-install and post-install hooks are possible in setup.sh (also works for dev.install)

prepare-docker-run.sh can influence production.ini or other relevant things
in the Docker container right before it is run.

Possibilities to turn off endpoints and whole resources on production

(TODO: add issue about a more generic approach)

Do not send emails to real addresses from non-production environments

TODO: link to the email section

Using different container registries for dev and for production

Useful if you keeo them separated or a thrid party manages your production
pipeline (e.g. when using a DTAP approach).

Parameter Handling

Assumption: both GET and POST work (reason for this or scrap it)

all parameters get collected in request[“args”]

Serialisation

JSON is default choice

methods of selecting a different type: Content-Type Header, file extension, ...

supported types: XML, CSV, HTML, YAML

Incoming HTTP data is decoded and outgoing data encoded. Special data type (de)serialisations are easy to add,
useful e.g. for DateTime objects.

Translations

Maintaining a translation (i18n) infrastructure is basically a solved
problem. But setting it up is tedious and making sure all strings get
translated, no matter where they live, can present pitfalls.

Translating a string in Spynl

dev.translate to simplify the workflow

A word about when Spynl translates

Spynl translates everything at the end (so you capture all strings, e.g. also constants)

Routing

Spynl takes control over many aspects of routing.

URLDispatch

(no traversal) default routes /{resource}/{method} /{method}

Endpoint registration

config.add_endpoint

It’s custom (do not use Pyramid’s config.add_view) - why? (at least to have a grip on documentation of endpoints, TODO: look for other reasons)

Custom resource registration

config.add_resource

A resource class at least needs a paths attribute.

Multiple paths (aliases) is possible in Spynl.

Custom routes

Basically adding meta data and a function to spynl.resource_routes_info. TODO:
show tutorial, argue why it is better to do it this way than simple using
Pyramid’s config.add_route directly. Hint: It has to do with applying routes
to resources unknown in the current plugin. It has/had a use case but maybe everyone
is better off now without it. Research.

HTML emails

Custom base template

(show this in my-package?)

Write a content template

(show this in my-package?)

Non-production email behaviour

Custom get_user_info

A lot of code needs information about the current (authenticated) user, e.g. in endpoints or for logging.

The in-built get_user_info function

Writing your own

def my_user_info(request, purpose=None)
 pass # TODO

config.add_settings(user_info_function=my_user_info)

Validation per JSON Schema

Aggregation of Logs

NewRelic

spynl.newrelic.key

Sentry

	spynl.sentry.project

	spynl.sentry.key

Error Handling

Error Views

All HTML 400 errors go through the error400 error view. All SpynlException errors will go through the spynl_error error view. All unexcected errors go trhough the error500 view and will only get internal server error as a message.

SpynlException class

An exception of the SpynlException (sub)class will go through the spynl_error exception endpoint. The response that is returned is defined in SpynlExcpetion and the error view makes sure that the exception is properly logged.

Messages

There are several message types that can be set for a SpynlException in the __init__.

The message is the message that is intended for the end user, it should be easy to read and not contain sensitive data.

The developer_message is intended for third party developers and while it can be technical, it should not contain any sensitive data.

The debug_message is meant for debugging, it will not be sent in the response, it will only be logged. It should be a normal string and never a translation string.

Extending the response

If you want to expose more information than just the message and the developer_message you can extend the response in a subclass.

class CustomException(SpynlException):

 def make_response(self):
 response = super().make_response()
 response.update({'custom_info': 'This is a custom response'})
 return response

Mapping external Exceptions

You can map external exceptions to internal exceptions, so they raise a SpynlException with a proper error message, instead of resulting in an internal server error.

For this you need to import the external error and register it at an internal error:

from external_package import ExternalException

@SpynlException.register_external_exception(ExternalException)
class InternalException(SpynlException):

 def __init__(self):
 message = 'This is a Spynl message'
 super().__init__(message=message)
 self.extra = ''

 def set_external_exception(self, external_exception):
 """ This particular external exception has an entry called extra """
 super().set_external_exception(external_exception)
 self.debug_message = str(self._external_exception)
 self.extra = self._external_exception.extra

 def make_response(self):
 """ To add the extra information to the response, you need to extend it. """
 response = super().make_response()
 response.update({'extra': self.extra})
 return response

To be able to use this functionality, you will need to activate the view_deriver that handles catching the external errors and the mapping in one of your includeme() functions:

from spynl.main.exceptions import catch_mapped_exceptions

 def includeme(config):
 # register the view deriver to catch mapped exceptions
 config.add_view_deriver(catch_mapped_exceptions)

Index

my-package contens

in the tutorials, we add to the my-package package feature by feature.
Here are links to the completed state:

	setup.py

	hello_world.py

	test_hello.py

	development.ini

	locale/nl/LC_MESSAGES/my-package.po

 _static/comment.png

_static/plus.png

_images/hello-swagger.png
Spynl Endpoints

Alist of all endpoints on this Spynl Instance, with a short description on how to use them.

All endpoints usually return application/json, unless otherwise specified here or requested differently by the request. They will have a
"status" (ok| error) field and all error responses also will have a "message" field.

about Show/Hide | ListOperations | Expand Operations
contact Show/Hide | List Operations | Expand Operations
my-package Show/Hide | List Operations | Expand Operations.

E Ihello Say hello to the world.

_images/jenkins-pipeline.png
IARRRRAD

Feb 3, 2017 9:47 AM

Unit Tests Deploy Smoke Tests
Feb2, 2017 3:12PM
5min 43s 6min 30s 2min 28s
Feb 2, 2017 2555 PM — — —
Feb 2, 2017 1:56 PM T
reoos NG) . . .
Feb2, 2017 1:19 PM Gz 6min 5s 7min 24s 2min 43s
1543
Feb 2, 2017 12558 PM
Feb2, 2017 11:41 AM - ®
Feb 03 . . .
Ghanges 6min 23s 8min 2s 3min 8s
Feb2, 2017 11:01 AM 1508

_images/hello-swagger2.png
my-package
IR reio

Implementation Notes

This Is a simple endpoint used for the basic Spynl tutorial.

Response

JSONkeys ContentType Description

status string "ok or ‘error*
message string Hello, world!

Tryitoutt

Show/Hide

List Operations

Expand Operations

sayhelo to the world.

_static/minus.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		Spynl - write a web app you can manage

 		Development tutorial

 		A plugin with one endpoint

 		Adding documentation for the endpoint

 		Serve on localhost

 		Getting help about spynl CLI tasks

 		Testing the endpoint

 		Adding translations

 		Tab completion for the spynl CLI

 		Installing the package from SCM

 		Building & Deploying Tutorial

 		Creating a Jenkins job

 		Configuring your Spynl plugin for Jenkins

 		Configuring your Spynl plugin for Deployment

 		Configuring your Spynl plugin for Smoke Testing

 		Deploying to your production environment

 		ini-settings

 		/about/ini

 		Spynl checks required settings on startup

 		Documenting your own settings

 		Your production environment(s)

 		Docker

 		Possibilities to turn off endpoints and whole resources on production

 		Do not send emails to real addresses from non-production environments

 		Using different container registries for dev and for production

 		Parameter Handling

 		Serialisation

 		Translations

 		Translating a string in Spynl

 		dev.translate to simplify the workflow

 		A word about when Spynl translates

 		Routing

 		URLDispatch

 		Endpoint registration

 		Custom resource registration

 		Custom routes

 		HTML emails

 		Custom base template

 		Write a content template

 		Non-production email behaviour

 		Custom get_user_info

 		The in-built get_user_info function

 		Writing your own

 		Validation per JSON Schema

 		Aggregation of Logs

 		NewRelic

 		Sentry

 		Error Handling

 		Error Views

 		SpynlException class

 		Messages

 		Extending the response

 		Mapping external Exceptions

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

